
Irfan Saeed’s Agile Paradigm Shift – Agile Mindset
• Successful use of Scrum depends on people becoming more proficient in living five values:

Commitment, Focus, Openness, Respect, and Courage.
• The fundamental unit of Scrum is a small team of people, a Scrum Team. The Scrum Team

consist of on Scrum Master, one Product Owner, and Developers. Within a Scrum Team,
there are no sub-teams or hierarchies. It is a cohesive unit of professionals focuses on one
objective at a time, the Product Goal.

• Scrum Teams are cross-functional, meaning the members have all the skills necessary to
create value each Sprint. They are also self-managing, meaning they internally decide who
does what, when and how.

• The Scrum Team is small enough to remain nimble and large enough to complete significant
work within a Sprint, typically 10 or fewer people.

• The Scrum Team is responsible for all product related activities from stakeholder
collaboration, verification maintenance, operation, experimentation, research and
development, and anything else that might be required. They are structured and
empowered by the organization to managed their own work. Working in Sprints at a
sustainable pace improves the Scrum Team’s focus and consistency.

• The entire Scrum Team is accountable for creating a valuable, useful Increment every
Sprint. Scrum defines three specific accountabilities within the Scrum Team: the Developer,
the Product Owner, and the Scrum Master.

Agile is not about five Scrum ceremonies (Sprint Planning, Daily Scrum, Sprint
Review, Sprint Retrospective, Backlog Refinement) that make up a Sprint.

Agile is not a menu of things from which you can cherry pick. This is a system.
Agile teams are dedicated teams. They have a single purpose, a clear objective, a
protector, a product owner who guides and shepherds the team along.

If your mindset, culture and management team still live, breath and
practice SDLC, having a Scrum Master, JIRA, Confluence, User Stories
Backlog, Velocity and labeling Agile will NOT make any difference
unless you truly believe in following principles:

• #1 Satisfy Customers Through Early & Continuous Delivery
• #2 Welcome Changing Requirements Even Late in the Project
• #3 Deliver Value Frequently
• #4 Break the Silos of Your Project
• #5 Build Projects Around Motivated Individuals
• #6 The Most Effective Way of Communication is Face-to-face
• #7 Working Software is the Primary Measure of Progress
• #8 Maintain a Sustainable Working Pace
• #9 Continuous Excellence Enhances Agility
• #10 Simplicity is Essential
• #11 Self-organizing Teams Generate Most Value
• #12 Regularly Reflect and Adjust Your Way of Work to Boost Effectiveness.

You are not Agile if you, your team and manger:
• Complains about changes and asks for change request. (violates principle #2).
• Team member who is sill idle waiting for user story or task to be assigned (violates

principle # 11).

• Maximum Duration 30 Days

Scrum Ceremonies
• Sprint planning meeting
• Daily Scrum
• Sprint review meeting
• Sprint Retrospective

Sprint Planning Meeting
• Timebox: 8 hours (max) for 4

weeks sprints. Less for Shorter
• Attendee: Scrum Team (all)
• Goal: Capacity, Sprint Goal /

Definition of Done, Sprint Backlog

Daily Scrum
• Timebox: 15 minutes
• Attendees: Complete Scrum Team
• Goal: Progress and Impediments
• What has been accomplished since last

meeting? What will be done before the next
meeting? What obstacle are in the way?

Sprint Review
• Timebox: 4 hours for 4

weeks sprints
• Attendees: Complete

Scrum Team &
Stakeholders

• Goal: Demo of project
work and assessing
feedback

Sprint Retrospective
• Timebox: 3 hours for 4 weeks sprints
• Attendees: Complete Scrum Team &

Stakeholders. Product Owner
(Optional)

• Goal: Brainstorm and agree on what is
working and what is not

Scrum Ceremonies
• Sprint planning meeting
• Daily Scrum
• Sprint review meeting
• Sprint Retrospective

Four Values of Agile Manifesto
• Individuals and interactions over processes and tools
• Working software over comprehensive

documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Defined Processes vs. Empirical Processes
• Empirical processes are interactive, incremental,

change often, adapt, and pass through the reviews
• Industrial work relies on defined processes
• Knowledge work relies on empirical processes
• A defined process defines all steps in advance
• Empirical processes are change driven

Scrum Basics
• A framework for complex adaptive problems
• Lightweight
• Simple to understand
• Difficult to master

Team Characteristics
• Self-Organized
• Cross -Functional

Pre-Sprint Activities
• Vision Statement: concise description of the

goals of the project
• Product Roadmap: visual timeline of major

product features to be delivered and is normally
created by the Product Owner

• Stories: requirements normally written by the
Product Owner and come from customer
requirements

• Product Backlog: made up of stories and
prioritized

Sprint Activities
• Sprint Planning meetings plan what will go into a Sprint
• The Product Owner prioritizes requirements and decides contents of the Sprint Backlog
• Stories make up Sprint Backlog
• Team breakdown stories into tasks
• Team takes 30 days or so to deliver an agreed amount of stories
• Daily Scrum of 15 minutes for team to collaborate with each other
• Sprint review team demonstrates the completed stories to customer in a Sprint Demo
• Scrum Retrospective team reviews Sprint and looks for improvement (lessons learned)
• Scrum Master makes sure the Scrum process is followed entirely and offers coaching

Scrum Team (only three roles)
• Product Owner
• Scrum Master
• Development Team members

Three Scrum Pillars (TIA)
• Transparency
• Inspection
• Adaptation

Scrum Events
• Sprint Planning
• Daily Scrum
• Sprint Review
• Sprint Retrospective

Sprint Details
• Timebox – 2 to 4 weeks
• Product owner can

cancel the sprint
• Work ~Aprox. Capacity
• Goal: To Do, Doing, Done

• Burn down Chart: Shows the amount of work which remaining in the current backlog. Time is displayed on the
horizontal axis and work remaining in the backlog is shown on the vertical axis. Over time, items are pulled from the
backlog, a plot line reveals work remaining. Burn down charts can be used in Sprint Backlogs and Product Backlogs.

• Burn up Chart: Shows the amount of work completed. Time is displayed on the horizontal axis and work remaining in
the backlog is shown on the vertical axis. Over time, as the project progresses and items are pulled from the backlog,
a plot line showing the completed work will rise. Utilizing Burn Up Chart: Track the work that has been completed. As
work is done the line moves upward. Provides additional insight into the project status.

• Daily Scrum: Time boxed event of 15 minutes for the Development Team to discuss what they did since the last Daily
Scrum, what they’ll work on today, and to identify and impediments that are preventing progress.

• Definition of Done (DoD): A common understanding of the Scrum Team’s expectations that the Increment must
create to be releasable into production. Everyone must agree upon the DoD.. Definition of “Done” Done”: The shared
understanding of what it means for a piece of work to be considered complete

• Development Team: The developer role within a Scrum Team. These are the people completing the work within an
iteration and are accountable for creating a releasable increment of product each Sprint.

• Empiricism: Scrum is an empirical process framework, meaning work and decisions are based on observation,
experience and experimentation. Scrum Empiricism has three pillars: inspection, transparency, and adaptation.

• Forecast of functionality: Development Team’s selection of items from the Product Backlog they deems possible to
complete in a Sprint.

• Increment: The end result of a Sprint is a piece of working software added to previously created Increments. The sum
of all project increments equate to the project’s product.

• Product Backlog: Prioritized, ordered list of the user stories to be completed by the Development Team to create,
maintain and sustain a product. The Product Owner manages and maintains the Product Backlog for a Scrum Project.
An ordered list of everything (aka stories) that might be needed in the final product.

• Product Backlog Refinement: The Product Owner and the Development Teams add granularity, detail, and
prioritization to the the stories within the Product Backlog.

• Product Owner: Scrum role that is accountable for maximizing the product’s value by managing and expressing
business and functional expectations for a product to the Development Team. This role is the Value Optimizer.

• Scrum: A project management framework that defines the rules and roles required in complex product development.
Scrum consists of three roles: Scrum Master, Product Owner, and the Development Team.

• Scrum Board: A poster or collection of posters to visualize communication for and by the Scrum Team. Sometimes
called an information radiator.

• Scrum Master: Scrum role that guides and coaches the Scrum Team and the organization to proper understanding and
implementation of Scrum.

• Scrum Team: Self organizing team consisting of a Product Owner, Development Team and Scrum Master.
• Self organization: Management principle where teams organize their work. Self organization happens within the

Scrum framework. Self organizations means the development team will determine how to accomplish work, rather
than being directed by a project manager or management.

• Sprint: An iteration within Scrum. Sprints are a time boxed event typically lasting four weeks or less.
• Sprint Backlog : Sprint Backlog: The selected stories from the Product Backlog become the Sprint Backlog. The Sprint

Goal is based on the Sprint Backlog. Selected items (stories) from the Product Backlog to be delivered through a
Sprint, along with the Sprint Goal and plans for delivering the items and realizing the Sprint Goal.

• Sprint Goal: Defines the purpose of a Sprint, often a business problem that is addressed. It’s the theme of the current
sprint and what the Development Team aims to accomplish.

• Sprint Planning: A meeting that is time boxed to eight hours to start a Sprint. This meeting allows the Scrum Team to
inspect the work from the Product Backlog that’s most valuable to be done in the next Sprint. The Sprint Backlog is
selected during Sprint Planning.

• Sprint Retrospective: A meeting held towards the end of a sprint. This meeting is a time boxed event of 3 hours and serves
for the Scrum Team to inspect the past Sprint and plan for improvements to be enacted during the next Sprint. This is a
learning lessons opportunity.

• Sprint Review: A time boxed meeting of four hours held at the end of the development work of a Sprint. The Scrum Team
will demonstrate what they’ve created for the stakeholders. Stakeholders will inspect the Increment and assess the impact
of the work performed on overall progress and update the Product backlog with any changes.

• Stakeholder: These are people external to the Scrum Team with a vested interest in the product that that the project is
created. Stakeholders are represented by the Product Owner.

• Technical Debt: The overhead of maintaining the product caused by poor design decisions, code refactoring, and the total
cost of ownership.

• Velocity: An indication of the average amount of Product Backlog the Development Team completed during an iteration.
• Increment : The set of all the Product Backlog items completed so far in the project (up to the end of a certain Sprint)
• Monitoring Progress towards a Goal : The performance measurement and forecast for the whole project
• Monitoring Sprint Progress : The performance measurement and forecasts for a single Sprint
• Increment Details: The product increment is the outcome of an iteration. The product increment is a chunk of the project

work. The development team and the product owner must agree what done means for an increment. Sum of all
completed Product Backlog items at the end of a Sprint. Each Increment must be “Done”. Must be releasable. Product
Owner may/may not release a certain Increment.

• Definition of Done: Shared understanding of what it means for a piece of work to be “Done". Definition of “Done” must be
discussed and agreed upon at the beginning of the project so that future Increments would be releasable. Over time, the
team will improve their definition of "Done" to include more stringent criteria.

• Definition of Done: Multiple Scrum Teams on a single project: Might not be possible to use the same definition of “Done”
for all teams, because they might be working on items of different natures. Each Scrum Team will define its own definition
of “Done” and delivers its items based on that definition. Integration of definitions of “Done” should be capable of creating
a potentially releasable Increment at the project level.

• Monitoring Project Progress: Product Owner responsible to monitor the progress of the project. Should be done at least
once per Sprint Review. Product Owner determines the amount of remaining work and compares it to the remaining work
of the previous Sprints. Forecasts the completion date of the project. All stakeholders should have access to this
information.

• Utilizing Burndown Chart: Track the work that remains to be done on a project. Measures the team progress in completing
the project work.

• Understanding Team Velocity: Velocity is the measure of a team's capacity for work per iteration. Measured in the same
unit that the team estimates the work. Velocity very early and then stabilizes. Velocity tends to plateau.

Story
Size

Story point
equivalent -
Configuration

Story point
equivalent -
Customization

XS 1 2

S 2 3

M 3 5

L 5 8

XL 8 13

XXL 13 21

XXXL 21 34

• 1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
• 2. Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage.
• 3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
• 4. Business people and developers must work together daily throughout the project.
• 5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
• 6. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
• 7. Working software is the primary measure of progress.
• 8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
• 9. Continuous attention to technical excellence and good design enhances agility.
• 10. Simplicity–the art of maximizing the amount of work not done–is essential.
• 11. The best architectures, requirements, and designs emerge from self-organizing teams.
• 12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

12 Principles Behind the Agile Manifesto. I do think one of the beautiful things about these principles is you need to think of them in a holistic way. You can’t just cherry pick a few of them.
We can get into why that can lead to bad outcomes—and some companies are doing that today, and they think they’re doing agile, but they get in trouble. Agile is not a menu of things
from which you can cherry pick. This is a system. Agile teams are dedicated teams. They have a single purpose, a clear objective, a protector, a product owner who guides and shepherds
the team along. These guys and gals work together on the single objective.
At the core, you need to be putting the customer first. You need to be clear on who the customer is, what problem you’re trying to solve, what matters to the customer, and prioritize.
Always come back to who the customer is. In some cases, the customer can be the internal customer. But often, you need to make sure that it’s the external customer. It’s about making
work fun again. Imagine that. Imagine getting your team members to enjoy what they’re doing and feel like they’re accomplishing their mission.
In typical organizations, the distance between the customer and the people doing the coding is eight layers of translation. That can only lead to wrong prioritization, compromise, and, in
the end, your likelihood of delighting the customer and doing something that’s “aha” is reduced.
That’s principle number one and incredibly important.
The second principle that I would add is around how to focus on people interactions versus process. So, how do you make sure that your team members don’t just take a project plan on
what we need to do and toss it over the wall to [another] team, but actually collaborate?
It’s scary for most organizations to let go. We have built organizations that are hierarchical, inspired from the military. Everything needs to flow up, all the way to the top, to people that
have been promoted—based on past behavior and successes—to people that supposedly know more. Every time you go up and down this chain, you have translation layers, and you lose
some of the nuances. Now we’re saying, no, let’s flip it around. We’re going to let the people who are closest to the problem, closest to the customer, make the trade-off within the scope
that we’ve agreed is the scope that they can operate in. That’s what makes it agile. That’s what makes it speedy. That’s what makes it flexible.
I also see many organizations, where they’ll get the input that what they’re building is not right, and they continue to invest in it just because they’ve already invested x amount of dollars.
They just feel like, “I need to bring it to the end. I need to bring it to the finish line even if it’s not valuable.” If it’s not working, kill it, sunset it. Focus on the right things that are relevant for
your business.
At the end of the sprint, it’s kind of a belly flop. It’s nothing special. That is a big problem that we’re seeing more and more in companies. If you don’t take a system view, and you don’t
think about all these components together, you’re not going to get the expected outcome.

https://kanbanize.com/agile/project-management/principles
https://kanbanize.com/agile/project-management/workflow
https://kanbanize.com/agile/project-management/planning
https://kanbanize.com/agile/project-management/agile-implementation
https://kanbanize.com/agile/project-management/agile-metrics
https://kanbanize.com/agile/project-management/tasks-epics-initiatives-themes
https://kanbanize.com/agile/project-management/agile-retrospective
https://kanbanize.com/agile/project-management/epics
https://kanbanize.com/agile/project-management/user-stories
https://kanbanize.com/agile/project-management/estimation
https://kanbanize.com/agile/project-management/reporting
https://kanbanize.com/agile/project-management/ceremonies
https://kanbanize.com/agile/project-management/benefits-of-agile
https://kanbanize.com/agile/project-management/agile-best-practices
https://kanbanize.com/agile/project-management/tools
https://kanbanize.com/agile/project-management/agile-vs-waterfall

https://kanbanize.com/agile/project-management/principles
https://kanbanize.com/agile/project-management/workflow
https://kanbanize.com/agile/project-management/planning
https://kanbanize.com/agile/project-management/agile-implementation
https://kanbanize.com/agile/project-management/agile-metrics
https://kanbanize.com/agile/project-management/tasks-epics-initiatives-themes
https://kanbanize.com/agile/project-management/agile-retrospective
https://kanbanize.com/agile/project-management/epics
https://kanbanize.com/agile/project-management/user-stories
https://kanbanize.com/agile/project-management/estimation
https://kanbanize.com/agile/project-management/reporting
https://kanbanize.com/agile/project-management/ceremonies
https://kanbanize.com/agile/project-management/benefits-of-agile
https://kanbanize.com/agile/project-management/agile-best-practices
https://kanbanize.com/agile/project-management/tools
https://kanbanize.com/agile/project-management/agile-vs-waterfall

	Irfan Saeed’s Agile Paradigm Shift – Agile Mindset
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

